MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Question	Answer	Marks
2(a)	Description Most parallel computer systems use this architecture. Computer architecture$\|$	4
2(b)	Only one (separate) processor / not many separate processors (is not massively parallel) Quad core computer system // processing units share the same bus 1 1 mark for each point, max 2	2
2(c)	Split into blocks of code that can be processed simultaneously instead of sequentially Each block is processed by a different processor which allows each of the many processors to simultaneously process the different blocks of code independently Requires both parallelism and co-ordination 1 mark for each point, max 2	2
2(d)	1 mark for identification of hardware issue, for example: Communication between the different processors is the issue 1 mark for further explanation from: Each processor needs a link to every other processor Many processors require many of these links Challenging topology	2

Question	Answer	Marks		
3(a)(i)	There should be a colon before the '=' sign	1		
3(a)(ii)	The second operand should be an unsigned integer and not a variable	1		
3(a)(iii)	A32 is not a variable, as a variable should be a letter followed by a single digit	1		
3(b)	```<assignment_statement> ::= <variable> := <variable> <operator> <unsigned_integer> <variable> ::= <letter> <digit> <unsigned_integer> ::= <digit> \| <digit> <unsigned_integer> <letter> ::= A	B	C ```	6
3(c)	Variable Syntax diagram shows one or two letters Syntax diagram shows zero, one or two digits	2		
3(d)		2		

Question	Answer	Marks
4(a)(i)	A (known) set of rules Agreed/standard method for data transmission // governs how two devices communicate	2
4(a)(ii)	Max 2 marks for purpose: Purpose of TLS is to provide for secure communication (over a network) maintain data integrity additional layer of security Max 2 marks for further explanation from: TLS provides improved security over SSL TLS is composed of two layers / record protocol and handshake protocol TLS protects this information by using encryption Also allows for authentication of servers and clients	Max 3
4(b)	The client validates (the server's) TLS Certificate The client sends its digital certificate (to the server if requested) Client sends an encrypted message to the server using the server's public key The server can use its private key to decrypt the message and get data needed for generating symmetric key Both server and client compute symmetric key (to be used for encrypting messages) // session key established The client sends back a digitally signed acknowledgement to start an encrypted session The server sends back a digitally signed acknowledgement to start an encrypted session 1 mark for each point, max 3 points	3
4(c)	Applications, for example: online banking private email online shopping online messaging etc. 1 mark for each point, Max 2	2

Question	Answer			Marks
$5(\mathrm{a})(\mathrm{i})$	\mathbf{A}	\mathbf{B}	\mathbf{X}	
	0	0	1	
	0	1	1	
	1	0	1	
	1	1	0	

Question	Answer	Marks
5(d)	A flip-flop can store either a 0 or a 1 Computers use bits to store data Flip-flops can therefore be used to store bits (of data) Memory can be created from flip-flops $\quad \mathbf{1}$ mark for valid point, max 2	$\mathbf{2}$

Question	Answer	Marks
6(c)(iii)	Load the contents of LOWREG into ACC Check bit position in LOWREG For each of the least significant 6 bits Use AND operation / mask to isolate a bit Jump to code corresponding to bit being looked at if value of bit is 1 Send signal to appropriate actuator to turn on the heater 1 mark for valid point, max 3 3	$\mathbf{3}$

